Following experimental data are available by emailing
to celata@casaccia.enea.it:
*
* * * * * * C F 3 * * * * * * *

Heat transfer
in pipes 

critical
heat flux in steadystate conditions 

critical
heat flux in transient conditions 
Fluid: R12
Wall: Stainless steel AISI 316, pipe Di=7.2 mm
12 wall thermocouples
6 fluid thermocouples
Q = 50  270 l/h (130,150,190)
Tfi= 17  90 C (27,37,50,65)
z = 2.3 and 1.18 m
P = from 9.5 to 30.5 bar
W = from 400 to 6000 W
Flow
Rate

130 
160 
190 
Pressure 
12.5 
2.0
2.5 3.0 3.5 4.0 
2.5
3.0 3.5 4.0 4.5 
3.0
3.5 4.0 4.5 
15.5 
2.0
2.5 3.0 3.5 
2.5
3.0 3.5 4.0 4.5 
3.0
3.5 4.0 4.5 
20.2 
2.0
2.5 3.0 
2.5
3.0 3.5 4.0 
3.0
3.5 4.0 
27.7 
2.5
3.0 
2.5
3.0 3.5 
3.5

Top
CF3STAZ.TXT
Tabseparated.
Steadystate data along the
pipe, 1448 tests
Pin 
6.2 to 31
[bar] 
Pout 
6.2 to 30.5
[bar] (12.5, 15.5, 20.2, 27.7) 
W 
375 to 7000
[W] 
Z 
1.18 and
2.3 [m] 
Q 
50 to 272
[l/h] (130, 160, 190) 
Tmul 
20 to 35
[°C] 
Tw1Tw12 
25 to 160
[°C] 
Tf1Tf8 
16 to 94
[°C] 
Top
CHF.TXT
Spaceseparated.
Critical heat flux, diameter=7.72
mm, Freon 114
114 tests
pi
[MPa] 
1.23
 2.96 
po
[MPa] 
0.616
 2.93 
G
[kg/m2s] 
385
 1558 
Ti
[°C] 
26.6
 89.5 
DTsub
[°C] 
0.78
 25.77 (82 tests at 23 °C) 
q"
[kW/m2] 
0.028
 92.59 
L
[m] 
1.18
and 2.3 
Top
Transient tests
tables
They contain the coefficients of the empirical
correlations to reconstruct the variations of the thermalhydraulic
parameters (imposed from the outside) during the transient.
Errors are in the file ERR.LAS. It is
necessary the report 'Dataset ...'.
q" = 30  120 kW/m2, 410 runs, 294
runs.
tp = 0.4  5
ERR.LAS
Uncertainly of the functions used to represent
the transients
TQ.TXT
Flow transient. 411 runs
p
[MPa] 
1.2  3.0 
G
[kg/m2s] 
1000  1490 
DTsub
[K] 
23 
q"
[kW/m2] 
32  115 
L
[m] 
1.18 and
2.3 
th
[s] 
0.4  15 
tchf
[s] 
0.3  14.5 
th = halfdecay time
TP.TXT
Pressure transient, 297 runs
p
[MPa] 
1.2  2.75 
G
[kg/m2s] 
1000  1500 
DTsub
[K] 
23 
q"
[kW/m2] 
28  110 
L
[m] 
1.18 and
2.3 
dp/dt
[MPa/s] 
0.05  0.9 
tchf
[s] 
0.3  6.9 
trew
[s] 
< 24 
TWG.TXT
Stepwise power transient
WchfWi
[kW] 
0.5; 1.0;
1.7 
WfWchf
[kW] 
0.2; 0.5;
1.0; 2.0 
Wi
[kW] 
1.2  4.5 
p
[MPa] 
1.2  2.75 
G
[kg/m2s] 
700  1500 
DTsub
[K] 
10  41 
q"
[kW/m2] 
28  110 
L
[m] 
1.18 and
2.3 
tchf
[s] 
0.5  4.3 
TWR.TXT
Rampwise power transient
dW/dt
[kW/s] 
0.5  6.0 
Wi
[kW] 
1.6  3.7 
p
[MPa] 
1.2  2.75 
G
[kg/m2s] 
750  1550 
DTsub
[K] 
10  41 K 
q"
[kW/m2] 
28  110 
L
[m] 
1.18 and
2.3 
tchf
[s] 
1  5.5 
QP.TXT
Flow rate + Pressure transient
WP.TXT
Stepwise power + Pressure transient
WP1.TXT
Rampwise power + Pressure transient
WQ.TXT
Stepwise power + Flow rate transient
WQ1.TXT
Rampwise power + Flow rate transient
WQP.TXT
Stepwise power + Flow rate + Pressure
transient
WQP1.TXT
Rampwise power + Flow rate + Pressure
transient
Transient tables, where the imposed variation
is obtained from the coefficients of empirical functions given in
"Dataset ..."
Top
*
* * * * * * J F * * * * * * *
TABELLA.TXT
Subcooled twophase critical flow.
137 runs
L
[m] 
0.016  1.5
length 
D
[mm] 
1.63  12.7
diameter 
L/D 
10  326 
Po
[MPa] 
0.86  3.4
inlet pressure 
To
[°C] 
107  240
inlet temperature 
Tsub
[°C] 
0.02  113
inlet subcooling 
Gexp
[kg/m2s] 
8960  48200
experimental mass flowrate 
Pc
[MPa] 
1.28  19
outlet pressure 
INCOND.TXT
Test table of critical flow with
noncondensable
Test section: diameter = 4.61 mm,
length = 325 diameters (1.5 m)
Po
[MPa] 
inlet pressure 
To
[°C] 
inlet temperature 
Tsub
[°C] 
inlet subcooling 
Pc
[MPa] 
outlet pressure 
Gco
[kg/m2s] 
twophase
mass flux without air injection 
Gc
[kg/m2s] 
twophase
mass flux with air injection 
Ga
[kg/m2s] 
air mass flux 
P1
[MPa] 
pressure at
2 mm from inlet 
P2
[MPa] 
pressure at
325 mm from inlet 
P3
[MPa] 
pressure at
1125 mm from inlet 
P4
[MPa] 
pressure at
1425 mm from inlet 
P5
[MPa] 
pressure at
1495 mm from inlet 
Top
*
* * * * * * E C O * * * * * * *
Direct contact condensation on:
TABGOCCE.TXT
Condensation on droplets data table.
164 runs, 1277 measurements
For each test we have, at different
distance from the nozzle:
z 
distance from
the nozzle 
Td 
droplet temperature 
TETA 
(TdTwo)/(TsTwo) 
h 
heat transfer
coefficient 
TAU 
nondimensional
time 4at/Do**2 
D 
droplet diameter 
ud 
droplet velocity 
e 
experimental
uncertainty of TETA 
f 
frequency
of the vibrator 
d 
nozzle diameter 
Ts 
steam temperature 
Tw,nom 
water temperature 
F_OPT.DAT
Most suitable frequency for the
formation of droplets of a prefixed diameter tabseparated, 48 data
Q [l/min] 
0.1  1 
volumetric
flow rate 
fopt
[Hz] 
600  13000 
best frequency 
d [mm] 
0.17  0.8 
hole diameter 
GETTO.DAT
data related to jets
DATA FORMAT :
run number
h/d d[mm]
tvap [°c], tin [°c], flow rate [l/min],
run number
1st location, temperature 1
2nd location, temperature 2
...
...
Nth location, temperature N
BREAKUP.DAT
Jet "breakup" in air data,
FLOW RATE 0  3.0
H/D 1  20
DIAMETER 1  5
LBREAK [mm] 0  416
and than original data from the pictures
DATIECO.DAT
Direct contact condensation: data related
to the circular geometry
119 data of saturated steam water interaction
12 data of saturated steam water interaction
for low water flow rates
run number,Tin,Tout,Tv,Tbulk,flow rate
[l/min]
Tv [C] 105  155
p [bar] 1.21  5.43
16 data related to the influence of the
water level (saturated steamwater interaction)
run number,Tin,Tout,Tv,Tbulk,Port.[l/min],level[mm]
151 data related to superheated steamwater
interaction
5 data related to general conditions during
the tests, for the measurement of the steam temperature gradient (superheated
steamwater interaction)
run number,Tin,Tout,Tv(sat.),Tbulk,Port.[l/min],Pressure[bar.],Tvap
PRET.TXT
e PRET.TAB (Tabseparated)
Direct contact condensation. Rectangular
geometry tests
224 runs
L[mm] 
4  10 
water level 
Q[l/min] 
0.05  1.6 
volumetric
flow rate 
G[kg/m2s] 
4.2  296 
mass flux 
Tv[°C] 
117  153 
steam temperature 
Ti[°C] 
19.7  72 
inlet liquid
temperature 
Tu[°C] 
25  87 
outlet liquid
temperature 
TETA[] 
0.007 
0.3 
condensation
efficiency (Tu  Ti)/(Tsat  Ti) 
z[mm] 
2  9 
distance
from the bottom of the channel at which T2, T3, T4, T5 are
measured 
T2,
T3, T4,T5[°C] 
21  123 
liquid temperatures
along the channel (in 124 tests) and, for 18 runs with superheated
steam 
pv[MPa] 
0.21  0.22 
steam pressure 
Tv[°C] 
160  190 
steam temperature 
TLOCALE.DAT
graphs fig.8 from "A Theoretical
and exper. study of turb..."
Top
*
* * * * * * S T A F * * * * * * *
STAF.DAT
Subcooled flow boiling critical heat flux:
Stationary
test, fluid 
Water 
Wall 
stainless
steel AISI 316 pipe 
Outlet
pressure(MPa) 
0.1  5.1 
Mass
flux(kg/m2s) 
2000  50000

Inlet
temperature(°C) 
20  75 
Critical
heat flux(MW/m2) 
4  67 
Internal
diameter(mm) 
0.25  8 
Heated
length(m) 
0.01  0.15 
Top
